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Introduction

Why study clusters in X-rays?

I Most of the luminous matter in clusters is gas in the intracluster medium, not
galaxies. In massive clusters, this gas is hot enough to radiate brightly in X-rays.

I Since X-ray luminosity depends strongly on gas density, X-ray surveys are a great
way to find big clusters for cosmology.

I Primary observables (density, temperature) are closely related to the gravitational
potential (total mass).



Introduction

The downside: deriving interesting cluster properties from X-ray observations requires
the assumption that the gas is in hydrostatic equilibrium. Simulations and mock-image
analysis indicate that this biases results.

Nagai et al. 2007



Introduction

The upside: the same simulations indicate that these systematics are
both quantifiable and manageable.

Nagai et al. 2007



Introduction

For largest relaxed clusters, we can measure
at r2500

• Mgas to ∼ 1% accuracy

• Mtot to few % accuracy

Bias and scatter are primarily due to
non-thermal pressure support (bulk
motions).

For the general population at r500

• Mgas is still recovered to few %

• Mtot is underestimated by 20–30%

← Nagai et al. 2007

filled circles = relaxed clusters
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Introduction

Gravitational lensing provides another handle.

RXJ1347-1145 (z = 0.45)



Introduction

What does relaxed mean?

Million & Allen 2008 Abell 2029



Introduction

What does unrelaxed mean?

Million & Allen 2008
1E0657-56



Outline

Cluster gas-mass fraction
Measuring Ωm with local observations
Constraining dark energy: fgas as a standard ruler

Growth of structure
Ingredients: the mass function and cluster scaling relations
Constraints on dark matter and dark energy
Tests of General Relativity

Allen et al. 2008, MNRAS, 383, 879
(See also e.g. White & Frenk ’91; Fabian ’91; Briel et al. ’92; White et al ’93;
David et al. ’95; White & Fabian ’95; Evrard ’97; Mohr et al ’99; Ettori &
Fabian ’99; Roussel et al. ’00; Grego et al ’00; Ettori et al. ’03; Sanderson et
al. ’03; Lin et al. ’03; LaRoque et al. ’06; Allen et al. ’02, ’04.)



fgas: measuring Ωm with local observations

Fair sample hypothesis: galaxy clusters are so large that their matter content is
approximately a fair sample of the matter content of the Universe (White & Frenk
1991).

For relaxed clusters, gas mass and total mass can be measured accurately with X-rays.

Definitions:

fgas =
Mgas

Mtot

s =
Mstar

Mgas
=

fstar

fgas

fbaryon = fstar + fgas = fgas(1 + s)

Fair sample: fbaryon = b Ωb/Ωm.

fgas =
fbaryon

1 + s
=

b

1 + s

„
Ωb

Ωm

«
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fgas: measuring Ωm with local observations

Non-radiative simulations indicate

b = fbaryon
Ωm

Ωb
= 0.83± 0.09

(+ 10% systematic uncertainty) at
r2500.

Observations and simulations agree well
at r2500.

Constant fit to the data:

fgas(r2500) = (0.113± 0.003)h−1.5
70

Using Ωbh2 = 0.0214± 0.002 (Kirkman et al. ’03), h = 0.72± 0.08 (Freedman et al.

’01), s = (0.16± 0.048)h
1/2
70 (e.g. Lin & Mohr ’04), b = 0.83± 0.09 (Eke et al. ’98

+10% systematic allowance),

Ωm =
b Ωb

fgas(1 + s)
= 0.27± 0.04
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fgas as a standard ruler

Measured fgas values depend on the assumed distances to clusters as fgas ∼ d 3/2. This
makes the apparent fgas(z) dependent on cosmological parameters.

SCDM (Ωm = 1.0, ΩΛ = 0.0) ΛCDM (Ωm = 0.3, ΩΛ = 0.7)
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fgas as a standard ruler

The full model:

f ref
gas(z) = Kγ

»
b(z)

1 + s(z)

– „
Ωb

Ωm

« „
θref
2500

θtrial
2500

«η »
dref(z)

dtrial(z)

–3/2



fgas as a standard ruler

The full model:

f ref
gas(z) = Kγ

»
b(z)

1 + s(z)

– „
Ωb

Ωm

« „
θref
2500

θtrial
2500

«η »
dref(z)

dtrial(z)

–3/2

Conservative systematic allowances used:

K : Instrument calibration, X-ray modeling
10% Gaussian uncertainty

γ : Non-thermal pressure support in gas (primarily bulk motions)
γ = Mest/Mtrue

10% uniform prior, 1 < γ < 1.1



fgas as a standard ruler

The full model:

f ref
gas(z) = Kγ

»
b(z)

1 + s(z)

– „
Ωb

Ωm

« „
θref
2500

θtrial
2500

«η »
dref(z)

dtrial(z)

–3/2

Conservative systematic allowances used:

b(z) : Depletion factor (simulation physics, gas clumping)
b(z) = b0(1 + αbz)
±20% uniform prior on b0

±10% uniform prior on αb

s(z) : Baryonic mass in stars (observational uncertainty)
s(z) = s0(1 + αsz) = fstar/fgas

30% Gaussian uncertainty on s0

±20% uniform prior on αs



fgas as a standard ruler

The full model:

f ref
gas(z) = Kγ

»
b(z)

1 + s(z)

– „
Ωb

Ωm

« „
θref
2500

θtrial
2500

«η »
dref(z)

dtrial(z)

–3/2

Ωb : Baryon density (independent data)
Ωbh2 = 0.0214± 0.002 (Kirkman et al. ’03)
h = 0.72± 0.08 (Freedman et al. ’01)

η : slope of fgas(r) at r2500 (measured)
10% Gaussian uncertainty



fgas: results for ΛCDM models

fgas: 42 clusters with standard priors

CMB: WMAP3+CBI+ACBAR
+ prior 0.2 < h < 2

Supernovae: 192 from Davis ’07
(ESSENCE+SNLS+HST+nearby)

Combination does not require Ωbh2, h
priors.

fgas alone:

Ωm = 0.27± 0.06

ΩΛ = 0.86± 0.119

Goodness of fit: χ2
ν = 41.5/40

Combination:

Ωm = 0.275± 0.033

ΩΛ = 0.735± 0.023



fgas: results for flat, constant-w models

fgas: 42 clusters with standard priors

CMB: WMAP3+CBI+ACBAR
+ prior 0.2 < h < 2

Supernovae: 192 from Davis ’07
(ESSENCE+SNLS+HST+nearby)

Combination does not require Ωbh2, h
priors.

fgas alone:

Ωm = 0.28± 0.06

w = −1.14+0.27
−0.35

Combination:

Ωm = 0.253± 0.021

w = −0.98± 0.07



fgas: results for flat, evolving-w models

Using

fgas: 42 clusters with standard priors

CMB: WMAP3+CBI+ACBAR
+ prior 0.2 < h < 2

Supernovae: 192 from Davis ’07
(ESSENCE+SNLS+HST+nearby)

Combination does not require Ωbh2, h
priors.

w(z) =
w0zt + wetz

z + zt

Marginalized over the transition redshift
0.5 < 1/(1 + zt) < 0.95

Results are consistent with ΛCDM

w0 = −1.05+0.31
−0.26

wet = −0.83+0.48
−0.43



Outline

Cluster gas-mass fraction
Measuring Ωm with local observations
Constraining dark energy: fgas as a standard ruler

Growth of structure
Ingredients: the mass function and cluster scaling relations
Constraints on dark matter and dark energy
Tests of General Relativity

Mantz et al. 2008, MNRAS, 387, 1179
Rapetti et al. 2008, arXiv:0812.2259
(See also e.g. Henry ’00; Borgani et al ’01; Reiprich & Böhringer ’02; Seljak
’02; Viana et al ’02; Allen et al. ’03; Pierpaoli et al. ’03; Vikhlinin et al. ’03;
Schuecker et al ’03; Voevodkin & Vikhlinin ’04; Henry ’04; Dahle ’06, Henry et
al. ’08, Vikhlinin et al. ’08)



Growth of structure: theoretical prediction

Suites of cosmological simulations predict cluster density
〈

dn
dMdz

〉
.

The mass function can be written in universal form (within 10–20% across a range of
tested cosmological models) in terms of σ(M, z), where

σ2(M, z) =
1

2π2

Z ∞

0

k2P (k, z)|WM (k)|2dk



Growth of structure: theoretical prediction

Once the normalization (σ8) is measured, the evolution of the mass function can be
used to learn about dark energy.



Growth of structure: X-ray luminosity function

Main observable: a wide-area, clean, complete cluster sample with a well understood
selection function.

Samples based on the ROSAT All-Sky Survey:

I BCS (Ebeling et al. ’98, ’00)
z < 0.3
∼ 33% sky coverage
F > 4.4× 10−12 erg s−1 cm−2

I REFLEX (Böhringer et al. ’04)
z < 0.3
∼ 33% sky coverage
F > 3.0× 10−12 erg s−1 cm−2

I MACS (Ebeling et al. ’01, ’07)
0.3 < z < 0.7
∼ 55% sky coverage
F > 2.0× 10−12 erg s−1 cm−2

Luminosity cut at 2.55× 1044h−2
70 erg s−1 leaves

78 + 130 + 34 = 242 massive clusters.



Growth of structure: scaling relation

Data of Reiprich & Böhringer ’02 Self-similarity suggests a power-law model

Y = α + βX1

where

Y = log10

„
E(z)M500

M�

«
X1 = log10

„
L

E(z)1044 erg s−1

«
and the factors of E(z) = H(z)/H0 are due to the
evolution in r500.

Marginalize over possible deviations from self-similarity:

Y = α + βX1 + γX2

X2 = log10(1 + z)
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Growth of structure: scaling relation

Data of Reiprich & Böhringer ’02

M , L from X-ray observations (Reiprich & Böhringer ’01). Departures from hydrostatic
equilibrium introduce a bias in the estimates of r500, M500.

Based on simulations, marginalize over bias −25(±5)% and scatter ±15(±3)%.

A problem, but major improvements are possible. . . in preparation.



Growth of structure: analysis sketch

BCS+REFLEX+MACS
Data of Reiprich & Böhringer ’02

Compare the survey data (redshifts, fluxes) with the expectation:*
dN(z, L̂)

dzdL̂

+
= Psel(z, L̂)

Z ∞

0

dL P (L̂|L)

Z ∞

0

dM P (L|M)

fi
dn(z, M)

dM

fl
dV

dz

selection function
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Growth of structure: analysis sketch

BCS+REFLEX+MACS
Data of Reiprich & Böhringer ’02

Compare the survey data (redshifts, fluxes) with the expectation:*
dN(z, L̂)

dzdL̂

+
= Psel(z, L̂)

Z ∞

0

dL P (L̂|L)

Z ∞

0

dM P (L|M)

fi
dn(z, M)

dM

fl
dV

dz

mass–luminosity intrinsic scatter



Growth of structure: analysis sketch

BCS+REFLEX+MACS
Data of Reiprich & Böhringer ’02

Compare the survey data (redshifts, fluxes) with the expectation:*
dN(z, L̂)

dzdL̂

+
= Psel(z, L̂)

Z ∞

0

dL P (L̂|L)

Z ∞

0

dM P (L|M)

fi
dn(z, M)

dM

fl
dV

dz

mass function and volume element



Growth of structure: priors and systematic allowances

Cosmological parameters
Hubble constant, h 0.72± 0.08 Hubble Key
Baryon density, Ωbh2 0.0214± 0.002 BBN

Mass function
normalization ±20% Gaussian

Mass–luminosity relation
non-similar evolution ±20% uniform
scatter evolution ±30% uniform
mass bias and scatter ±20% Gaussian



Growth of structure: results for flat ΛCDM models

Results from the 3 cluster samples
individually are consistent with one another,
and with most previous work using clusters.

BCS Ωm = 0.26+0.25
−0.09

σ8 = 0.78+0.10
−0.37

REFLEX Ωm = 0.20+0.10
−0.04

σ8 = 0.85+0.10
−0.09

MACS Ωm = 0.30+0.24
−0.10

σ8 = 0.73+0.14
−0.13

Combination Ωm = 0.28+0.11
−0.07

σ8 = 0.78+0.11
−0.13



Growth of structure: results for flat ΛCDM models

Results agree with independent
cosmological data.

XLF: 242 clusters, z < 0.7

Ωm = 0.28+0.11
−0.07

σ8 = 0.78+0.11
−0.13

CMB: WMAP3 data

Cosmic shear: CFHTLS Wide, linear regime
(Fu et al. ’08)



Growth of structure: results for flat constant-w models

From the XLF:

Ωm = 0.24+0.15
−0.07

σ8 = 0.85+0.13
−0.20

w = −1.4+0.4
−0.7

From the combination:

Ωm = 0.269± 0.016 (0.258± 0.022)

σ8 = 0.82± 0.03 (0.79± 0.06)

w = −1.02± 0.06 (−0.99± 0.07)

Combined results are consistent with ΛCDM.



Growth of structure: goodness of fit

Observed number as a function of flux limit
compared with predictions the ΛCDM best
fit for each survey.



Testing general relativity with the growth of structure

Growth of density perturbations
δ = (ρm − ρ̄m)/ρ̄m in GR:

δ̈ + 2
ȧ

a
δ̇ = 4Gπρmδ

Instead, parametrize through

dδ

da
=

δ

a
Ωm(a)γ

with γ ∼ 0.55 accurately reproducing GR.

The growth function in this model

I matches GR at early times

I has the same scale dependence as GR

I is allowed to have a different time dependence

On smaller scales, gravity is unmodified.



Testing general relativity with the growth of structure

Growth of density perturbations
δ = (ρm − ρ̄m)/ρ̄m in GR:

δ̈ + 2
ȧ

a
δ̇ = 4Gπρmδ

Instead, parametrize through

dδ

da
=

δ

a
Ωm(a)γ

with γ ∼ 0.55 accurately reproducing GR.

Rapetti et al., arXiv:0812.2259

XLF+WMAP5+fgas+snIa(Union)

ΛCDM γ = 0.51+0.16
−0.15

wCDM∗ γ = 0.44+0.17
−0.15

non-flat ΛCDM γ = 0.51+0.19
−0.14

∗w is used only to parametrize the expansion history in this model



Conclusions

I fgas(z) data for largest relaxed clusters → tight constraints on Ωm, ΩΛ and w
through absolute distance measurements.

Ωm = 0.27± 0.06 ΩΛ = 0.86± 0.119
`
w = −1.14+0.27

−0.35

´
I Growth of X-ray luminous clusters spanning 0 < z < 0.7 → independent

constraints on Ωm, σ8 and w.

Ωm = 0.28+0.11
−0.07 σ8 = 0.78+0.11

−0.13

`
w = −1.4+0.4

−0.7

´
I Combination of fgas, XLF, CMB and snIa data

Ωm = 0.269± 0.016 σ8 = 0.82± 0.03 w = −1.02± 0.06

I Combination applied to tests of General Relativity

Ωm = 0.27± 0.02 σ8 = 0.82± 0.05 γ = 0.51± 0.15

This year: new X-ray and lensing data should provide improvement
in both fgas and XLF results

Next few years: new fgas targets and cluster samples from SZ, X-ray, optical surveys
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